(4, 2)-Choosability of Planar Graphs with Forbidden Structures

نویسندگان

  • Zhanar Berikkyzy
  • Christopher Cox
  • Michael Dairyko
  • Kirsten Hogenson
  • Mohit Kumbhat
  • Bernard Lidický
  • Kacy Messerschmidt
  • Kevin Moss
  • Kathleen Nowak
  • Kevin F. Palmowski
  • Derrick Stolee
چکیده

All planar graphs are 4-colorable and 5-choosable, while some planar graphs are not 4-choosable. Determining which properties guarantee that a planar graph can be colored using lists of size four has received significant attention. In terms of constraining the structure of the graph, for any l∈{3,4,5,6,7}" role="presentation" style="box-sizing: border-box; display: inline; line-height: normal; letter-spacing: normal; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">l∈{3,4,5,6,7}l∈{3,4,5,6,7}, a planar graph is 4-choosable if it is l" role="presentation" style="boxsizing: border-box; display: inline; line-height: normal; letter-spacing: normal; word-spacing: normal; wordwrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; minwidth: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">ll-cycle-free. In terms of constraining the list assignment, one refinement of k-choosability is choosability with separation. A graph is (k, s)-choosable if the graph is colorable from lists of size k where adjacent vertices have at most s common colors in their lists. Every planar graph is (4, 1)-choosable, but there exist planar graphs that are not (4, 3)-choosable. It is an open question whether planar graphs are always (4, 2)-choosable. A chordedl" role="presentation" style="box-sizing: border-box; display: inline; line-height: normal; letter-spacing: normal; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">ll-cycle is an l" role="presentation" style="box-sizing: border-box; display: inline; line-height: normal; letter-spacing: normal; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">ll-cycle with one additional edge. We demonstrate for each l∈{5,6,7}" role="presentation" style="box-sizing: border-box; display: inline; line-height: normal; letter-spacing: normal; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">l∈{5,6,7}l∈{5,6,7} that a planar graph is (4, 2)-choosable if it does not contain chorded l" role="presentation" style="box-sizing: border-box; display: inline; line-height: normal; letter-spacing: normal; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">ll-cycles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

$n$-Array Jacobson graphs

We generalize the notion of Jacobson graphs into $n$-array columns called $n$-array Jacobson graphs and determine their connectivities and diameters. Also, we will study forbidden structures of these graphs and determine when an $n$-array Jacobson graph is planar, outer planar, projective, perfect or domination perfect.

متن کامل

On Choosability with Separation of Planar Graphs with Forbidden Cycles

We study choosability with separation which is a constrained version of list coloring of graphs. A (k, d)-list assignment L of a graph G is a function that assigns to each vertex v a list L(v) of at least k colors and for any adjacent pair xy, the lists L(x) and L(y) share at most d colors. A graph G is (k, d)-choosable if there exists an L-coloring of G for every (k, d)-list assignment L. This...

متن کامل

Bounds on circular consecutive choosability

The circular consecutive choosability chcc(G) of a graph G has been recently introduced in [2]. In this paper we prove upper bounds on chcc for series-parallel graphs, planar graphs and k-choosable graphs. Our bounds are tight for classes of series-parallel graphs and k-choosable graphs for k ≥ 3. Then we study the circular consecutive choosability of generalized theta graphs. Lower bounds for ...

متن کامل

Choosability in signed planar graphs

This paper studies the choosability of signed planar graphs. We prove that every signed planar graph is 5-choosable and that there is a signed planar graph which is not 4-choosable while the unsigned graph is 4-choosable. For each k ∈ {3, 4, 5, 6}, every signed planar graph without circuits of length k is 4-choosable. Furthermore, every signed planar graph without circuits of length 3 and of le...

متن کامل

Some structural properties of planar graphs and their applications to 3-choosability

In this article, we consider planar graphs in which each vertex is not incident to some cycles of given lengths, but all vertices can have different restrictions. This generalizes the approach based on forbidden cycles which corresponds to the case where all vertices have the same restrictions on the incident cycles. We prove that a planar graph G is 3-choosable if it is satisfied one of the fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Graphs and Combinatorics

دوره 33  شماره 

صفحات  -

تاریخ انتشار 2017